OllamaFunctions
This was an experimental wrapper that attempts to bolt-on tool calling support to models that do not natively support it. The primary Ollama integration now supports tool calling, and should be used instead.
This notebook shows how to use an experimental wrapper around Ollama that gives it tool calling capabilities.
Note that more powerful and capable models will perform better with complex schema and/or multiple functions. The examples below use llama3 and phi3 models. For a complete list of supported models and model variants, see the Ollama model library.
Overviewβ
Integration detailsβ
Class | Package | Local | Serializable | JS support | Package downloads | Package latest |
---|---|---|---|---|---|---|
OllamaFunctions | langchain-experimental | β | β | β |
Model featuresβ
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Native async | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|---|
β | β | β | β | β | β | β | β | β | β |
Setupβ
To access OllamaFunctions
you will need to install langchain-experimental
integration package.
Follow these instructions to set up and run a local Ollama instance as well as download and serve supported models.
Credentialsβ
Credentials support is not present at this time.
Installationβ
The OllamaFunctions
class lives in the langchain-experimental
package:
%pip install -qU langchain-experimental
Instantiationβ
OllamaFunctions
takes the same init parameters as ChatOllama
.
In order to use tool calling, you must also specify format="json"
.
from langchain_experimental.llms.ollama_functions import OllamaFunctions
llm = OllamaFunctions(model="phi3")
Invocationβ
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer.", id='run-94815fcf-ae11-438a-ba3f-00819328b5cd-0')
ai_msg.content
"J'adore programmer."
Chainingβ
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
AIMessage(content='Programmieren ist sehr verrΓΌckt! Es freut mich, dass Sie auf Programmierung so positiv eingestellt sind.', id='run-ee99be5e-4d48-4ab6-b602-35415f0bdbde-0')
Tool Callingβ
OllamaFunctions.bind_tools()β
With OllamaFunctions.bind_tools
, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to a tool definition schemas, which looks like:
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm_with_tools = llm.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke(
"what is the weather like in San Francisco",
)
ai_msg
AIMessage(content='', id='run-b9769435-ec6a-4cb8-8545-5a5035fc19bd-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': 'call_064c4e1cb27e4adb9e4e7ed60362ecc9'}])
AIMessage.tool_callsβ
Notice that the AIMessage has a tool_calls
attribute. This contains in a standardized ToolCall
format that is model-provider agnostic.
ai_msg.tool_calls
[{'name': 'GetWeather',
'args': {'location': 'San Francisco, CA'},
'id': 'call_064c4e1cb27e4adb9e4e7ed60362ecc9'}]
For more on binding tools and tool call outputs, head to the tool calling docs.
API referenceβ
For detailed documentation of all ToolCallingLLM features and configurations head to the API reference: https://api.python.langchain.com/en/latest/llms/langchain_experimental.llms.ollama_functions.OllamaFunctions.html